Osteopontin mediates obesity-induced adipose tissue macrophage infiltration and insulin resistance in mice.
نویسندگان
چکیده
Obesity is associated with a state of chronic, low-grade inflammation characterized by abnormal cytokine production and macrophage infiltration into adipose tissue, which may contribute to the development of insulin resistance. During immune responses, tissue infiltration by macrophages is dependent on the expression of osteopontin, an extracellular matrix protein and proinflammatory cytokine that promotes monocyte chemotaxis and cell motility. In the present study, we used a murine model of diet-induced obesity to examine the role of osteopontin in the accumulation of adipose tissue macrophages and the development of insulin resistance during obesity. Mice exposed to a high-fat diet exhibited increased plasma osteopontin levels, with elevated expression in macrophages recruited into adipose tissue. Obese mice lacking osteopontin displayed improved insulin sensitivity in the absence of an effect on diet-induced obesity, body composition, or energy expenditure. These mice further demonstrated decreased macrophage infiltration into adipose tissue, which may reflect both impaired macrophage motility and attenuated monocyte recruitment by stromal vascular cells. Finally, obese osteopontin-deficient mice exhibited decreased markers of inflammation, both in adipose tissue and systemically. Taken together, these results suggest that osteopontin may play a key role in linking obesity to the development of insulin resistance by promoting inflammation and the accumulation of macrophages in adipose tissue.
منابع مشابه
Does osteopontin induce adipose tissue inflammation by local macrophage proliferation?
In this issue of Molecular Metabolism, Tardelli and colleagues analyzed the impact of osteopontin (OPN) on monocyte and macrophage proliferation in the context of obesity-driven adipose tissue inflammation [1]. Chronic low-grade inflammation of adipose tissue during obesity, a crucial contributor to insulin resistance, type 2 diabetes, and subsequent cardiovascular disease, is associated with a...
متن کاملNeutralization of Osteopontin Inhibits Obesity-Induced Inflammation and Insulin Resistance
OBJECTIVE Obesity is associated with a state of chronic low-grade inflammation mediated by immune cells that are primarily located to adipose tissue and liver. The chronic inflammatory response appears to underlie obesity-induced metabolic deterioration including insulin resistance and type 2 diabetes. Osteopontin (OPN) is an inflammatory cytokine, the expression of which is strongly upregulate...
متن کاملElevated Expression of Osteopontin May Be Related to Adipose Tissue Macrophage Accumulation and Liver Steatosis in Morbid Obesity
OBJECTIVE Osteopontin (OPN) plays an important role in the development of insulin resistance and liver complications in dietary murine models. We aimed to determine the expression pattern of OPN and its receptor CD44 in obese patients and mice according to insulin resistance and liver steatosis. RESEARCH DESIGN AND METHODS OPN and CD44 expressions were studied in 52 morbidly obese patients an...
متن کاملMyeloid Heme Oxygenase-1 Haploinsufficiency Reduces High Fat Diet-Induced Insulin Resistance by Affecting Adipose Macrophage Infiltration in Mice
Increased adipose tissue macrophages contribute to obesity-induced metabolic syndrome. Heme oxygenase-1 (HO-1) is a stress-inducible enzyme with potent anti-inflammatory and proangiogenic activities in macrophages. However, the role of macrophage HO-1 on obesity-induced adipose inflammation and metabolic syndrome remains unclear. Here we show that high-fat diet (HFD) feeding in C57BL/6J mice in...
متن کاملAn increase in the circulating concentration of monocyte chemoattractant protein-1 elicits systemic insulin resistance irrespective of adipose tissue inflammation in mice.
Chronic inflammation in adipose tissue is thought to be important for the development of insulin resistance in obesity. Furthermore, the level of monocyte chemoattractant protein-1 (MCP-1) is increased not only in adipose tissue but also in the circulation in association with obesity. However, it has remained unclear to what extent the increased circulating level of MCP-1 contributes to insulin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of clinical investigation
دوره 117 10 شماره
صفحات -
تاریخ انتشار 2007